LECTURE: 2-8 THE DERIVATIVE AS A FUNCTION

The function

$$f'(x) = \frac{\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}}{h}$$

is called the **derivative of** f. The value of f' at x can be interpreted geometrically as the <u>flope</u> of the tangent line to f at the point (x, f(x)). Note: f' is called the derivative because it has been derived from f using the limit operation defined above. The domain of f' is the set of all x such that this limit exists and may be smaller than the domain of f.

Example 1: Let $f(x) = x^3 - 2x + 2$.

(a) Find a formula for f'(x).

$$f'(x) = \lim_{h \to 0} \frac{f(x+n) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{(x+n)^3 - 2(x+h) + 2 - (x^3 - 2x + 2)}{h}$
= $\lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - 2x - 2h + 2 - x^3 + 2x - 2}{h}$
= $\lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - 2h}{h}$
= $\lim_{h \to 0} (3x^2 + 3xh + h^2 - 2)$
= $\Im x^2 - 2$

(b) Illustrate this formula by comparing the graphs of f(x) and f'(x), which are shown below.

Example 2: The graph of f is given below. Use it to sketch the graph of the derivative f'.

UAF Calculus I

Example 3: If $f(x) = \sqrt{x-5}$ find the derivative of f. State the domain of f and f'.

$$f^{2}(x) = \lim_{h \to 0} \frac{f(x+n) - f(x)}{h} = \sqrt{x-5} + \sqrt{x-5}$$

$$= \lim_{h \to 0} \left(\sqrt{x+n-5} - \sqrt{x-5} \right) \left(\sqrt{x+n-5} + \sqrt{x-5} \right)$$

$$= \lim_{h \to 0} \frac{(x+n-5) - (x-5)}{h(\sqrt{x+n-5} + \sqrt{x-5})} = \left[\frac{1}{2\sqrt{x-5}} \right]$$

$$= \lim_{h \to 0} \frac{x+n-5 - x+5}{h(\sqrt{x+n-5} + \sqrt{x-5})} \quad Domain f: x-5 \neq 0$$

$$x \neq 5 \quad [5, \infty]$$

$$= \lim_{h \to 0} \frac{h}{h(\sqrt{x+n-5} + \sqrt{x-5})} \quad Domain f': x-5 \neq 0$$

$$x \neq 5 \quad [5, \infty]$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{x+n-5} + \sqrt{x-5}} \quad Domain f': x-5 \neq 0$$

Example 4: If $f(x) = \frac{2-x}{5+2x}$ find f'(x). State the domain of f and f'.

Domain f:
$$X \neq -\frac{5}{2}$$

Domain f': $X \neq -\frac{5}{2}$

$$f^{2}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \left(\frac{2 - (x+h)}{5 + 2(x+h)} - \left(\frac{2 - x}{5 + 2x}\right) \right) \frac{1}{h}$$

$$= \lim_{h \to 0} \left[\left(\frac{2 - x - h}{5 + 2x + 2h} \right)^{\frac{5 + 2x}{5 + 2x}} - \left(\frac{2 - x}{5 + 2x} \right)^{\frac{5 + 2x + 2h}{5 + 2x + 2h}} \right]^{\frac{1}{h}} \frac{1}{h}$$

$$= \lim_{h \to 0} \frac{10 - 5x - 5h + 4x - 2x - 2xh - (x5 + 4x + 4h - 5x - 2x - 2xh)}{h(5 + 2x + 2h)(5 + 2x)}$$

$$= \lim_{h \to 0} \frac{-9h}{h(5 + 2x + 2h)(5 + 2x)}$$

$$= \lim_{h \to 0} \frac{-9}{(5 + 2x + 2h)(5 + 2x)}$$

$$= \left[\lim_{h \to 0} \frac{-9}{(5 + 2x + 2h)(5 + 2x)}\right]$$

UAF Calculus I

Other Notations for f'(x)

given
$$y = f(x)$$
, $\frac{\partial y}{\partial x} = f'(x)$.

A function f is differentiable at a if f'(a) exists. It is differentiable on an open interval (a, b) [or $(a, \infty), (-\infty, a)$ or $(-\infty, \infty)$] if it is differentiable at every number in the interval.

Example 5: Where do the following functions fail to be differentiable?

Example 6: Where does $f(x) = \sqrt[3]{x}$ fail to be differentiable? Graph f(x) and explain what the behavior of the tangent line is near this point.

Example 7: A graph of a function f(x) is shown below. State, with reasons, where the function f is not differentiable.

Differentiable Implies Continuous: If *f* is differentiable at *a*, then *f* is continuous at *a*.

Proof:

We assume f is differentiable, so
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$
.
We want to show $\lim_{x \to a} f(x) = f(a)$.
Start w/ $f(x) - f(a) = \frac{f(x) - f(a)}{x - a}$.
Now $\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} (x - a)$
 $= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} (x - a)$
 $= f'(a) \cdot 0$
 $= 0$.
Thus $\lim_{x \to a} (f(x) - f(a)) = 0 \Rightarrow \lim_{x \to a} f(x) - \lim_{x \to a} f(a) = 0 \Rightarrow \lim_{x \to a} f(x) - f(ca)$
Is the converse of this theorem true? That is, if f is continuous at $x = a$ does this imply that f is differentiable at $=0$

s theorem true? That is, if f is con $\begin{cases} \text{ and } \lim_{X \to a} f(x) = f(a). \\ X \to a \\ Thus f(x) \text{ is cts.} \\ A^{+} x = a. \end{cases}$ *a*? Why or why not?

Higher Derivatives

If f is a differentiable function then its derivative f' is a function, so f' may also have a derivative of its own, denoted by (f')' = f'', called the second derivative. Similarly you can also take the derivative of the second derivative, called the third derivative f'''.

Example 8: Given $f(x) = x^3 - 2x + 2$, find and interpret f''(x), f'''(x) and $f^{(4)}(x)$. (Note: We found $f'(x) = 3x^2 - 2$ $\int dW = \int f''(X + h) - f''(y)$ *in an earlier example.*)

We have
$$f^{2}(x) = 3x^{2} - 2$$

Now $f^{n}(x) = \lim_{h \to 0} \frac{f^{2}(x+h) - f^{2}(x)}{h}$
 $= \lim_{h \to 0} \frac{3(x+h)^{2} - 2 - (3x^{2} - 2)}{h}$
 $= \lim_{h \to 0} \frac{3(x+h)^{2} - 2 - (3x^{2} - 2)}{h}$
 $= \lim_{h \to 0} \frac{3(x^{2} + 2xh + h^{2}) - 2 - 3x^{2} + 2}{h}$
 $= \lim_{h \to 0} \frac{6h}{h}$
 $= \lim_{h \to 0} \frac{6h$