Lecture: 2-8 The Derivative as a Function

The function

$$
f^{\prime}(x)=\underline{\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}}
$$

is called the derivative of f. The value of f^{\prime} at x can be interpreted geometrically as the slope \qquad of the tangent line to f at the point $(x, f(x))$. Note: f^{\prime} is called the derivative because it has been derived from f using the limit operation defined above. The domain of f^{\prime} is the set of all x such that this limit exists and may be smaller than the domain of f.

Example 1: Let $f(x)=x^{3}-2 x+2$.
(a) Find a formula for $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{3}-2(x+h)+2-\left(x^{3}-2 x+2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{3}+3 x^{2} h+3 x h^{2}+h^{3}-2 x-2 h+2-x^{3}+2 x-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}-2 h}{h} \\
& =\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}-2\right) \\
& =3 x^{2}-2
\end{aligned}
$$

(b) Illustrate this formula by comparing the graphs of $f(x)$ and $f^{\prime}(x)$, which are shown below.

Example 2: The graph of f is given below. Use it to sketch the graph of the derivative f^{\prime}.

Example 3: If $f(x)=\sqrt{x-5}$ find the derivative of f. State the domain of f and f^{\prime}.

$$
\begin{aligned}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\frac{1}{\sqrt{x-5}+\sqrt{x-5}} \\
& \left.=\lim _{h \rightarrow 0} \frac{(\sqrt{x+h-5}-\sqrt{x-5})}{(h}\right) \frac{(\sqrt{x+h-5}+\sqrt{x-5})}{(\sqrt{x+h-5}+\sqrt{x-5})}=\frac{1}{2 \sqrt{x-5}}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{(x+h-5)-(x-5)}{h(\sqrt{x+h-5}+\sqrt{x-5})}
$$

$$
=\lim _{h \rightarrow 0} \frac{x+h-5-x+5}{h(\sqrt{x+h-5}+\sqrt{x-5})}
$$

Domain f: $x-5 \geqslant 0$

$$
x \geqslant 5 \quad[5, \infty)
$$

$$
=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h-5}+\sqrt{x-5})}
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h-5}+\sqrt{x-5}}
$$

Domain $f^{\prime}: x-5>0$

$$
x>5 \quad(5, \infty)
$$

Example 4: If $f(x)=\frac{2-x}{5+2 x}$ find $f^{\prime}(x)$. State the domain of f and f^{\prime}.

$$
\text { Domain } f: x \neq-5 / 2
$$

$$
\text { Domain } f^{\prime}: x \neq-5 / 2
$$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { Domain } f^{\prime}: x \\
&=\lim _{h \rightarrow 0}\left(\frac{2-(x+h)}{5+2(x+h)}-\left(\frac{2-x}{5+2 x}\right)\right) \frac{1}{h} \\
&=\lim _{h \rightarrow 0}\left[\left(\frac{2-x-h}{5+2 x+2 h}\right)\left(\frac{5+2 x)}{(5+2 x)}\left(\frac{2-x}{5+2 x}\right)\left(\frac{5+2 x+2 h}{5+2 x+2 h}\right)\right] \cdot \frac{1}{h}\right. \\
&=\lim _{h \rightarrow 0} \frac{10-5 x-5 h+4 x-2 x^{2}-2 x h-\left(10+4 x+4 h-5 x-2 x^{2}-2 x h\right)}{h(5+2 x+2 h)(5+2 x)} \\
&=\lim _{h \rightarrow 0} \frac{-9 h}{h(5+2 x+2 h)(5+2 x)} \\
&=\lim _{h \rightarrow 0} \frac{-9}{(5+2 x+2 h)(5+2 x)} \\
&= \frac{-9}{(5+2 x)^{2}}
\end{aligned}
$$

Other Notations for $f^{\prime}(x)$

$$
\text { given } y=f(x), \quad d y / d x=f^{\prime}(x)
$$

A function f is differentiable at a if $f^{\prime}(a)$ exists. It is differentiable on an open interval (a, b) [or $(a, \infty),(-\infty, a)$ or $(-\infty, \infty)]$ if it is differentiable at every number in the interval.

Example 5: Where do the following functions fail to be differentiable?

Example 6: Where does $f(x)=\sqrt[3]{x}$ fail to be differentiable? Graph $f(x)$ and explain what the behavior of the tangent line is near this point.

At $x=0$, the slope of the targent line is infinite.

Thus $f^{\prime}(x)$ fails to exist (or f is not differentiable) at $x=0$.

Example 7: A graph of a function $f(x)$ is shown below. State, with reasons, where the function f is not differentable.

- at $x=-4, f(x)$ is not cts
- at $x=-1, f(x)$ has corner
- at $x=2, f(x)$ is not cts
- at $x=5, f(x)$ has vertical
tangent.

Proof:
We assume f is differentiable, so $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a)$. We want to show $\lim _{x \rightarrow a} f(x)=f(a)$.
start $w / f(x)-f(a)=\frac{f(x)-f(a)}{x-a}(x-a)$.
Now

$$
\begin{aligned}
\lim _{x \rightarrow a}(f(x)-f(a)) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}(x-a) \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \lim _{x \rightarrow a}(x-a) \\
& =f^{\prime}(a) \cdot 0 \\
& =0
\end{aligned}
$$

Thus $\lim _{x \rightarrow a}(f(x)-f(a))=0 \Rightarrow \lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} f(a)=0 \Rightarrow \lim _{x \rightarrow a} f(x)-f(a)$ Is the converse of this theorem true? That is, if f is continuous at $x=a$ does this imply that f is differentiable at $=0$
a ? Why or why not? a ? Why or why not?
No, $f(x)=|x|$ is cts at $x=0$, but $f^{\prime}(0)$ DUE.
Higher Derivatives

$$
\left\{\begin{array}{l}
\text { and } \lim _{x \rightarrow a} f(x)=f(a) . \\
\text { Thus } f(x) \text { is cts. } \\
\text { at } x=a \text {. }
\end{array}\right.
$$

If f is a differentiable function then its derivative f^{\prime} is a function, so f^{\prime} may also have a derivative of its own, denoted by $\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}$, called the second derivative. Similarly you can also take the derivative of the second derivative, called the third derivative $f^{\prime \prime \prime}$.
Example 8: Given $f(x)=x^{3}-2 x+2$, find and interpret $f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$ and $f^{(4)}(x)$. (Note: We found $f^{\prime}(x)=3 x^{2}-2$ in an earlier example.)
We have $f^{\prime}(x)=3 x^{2}-2$
Now

$$
\begin{aligned}
& \text { Low } \begin{aligned}
f^{\prime \prime}(x) & =\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3(x+h)^{2}-2-\left(3 x^{2}-2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3\left(x^{2}+2 x h+h^{2}\right)-2-3 x^{2}+2}{h} \\
= & \lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}}{h} \\
= & \lim _{h \rightarrow 0}(6 x+3 h) \\
\text { UAF Calculus I } & =6 x
\end{aligned}
\end{aligned}
$$

