LEC

TURE: 2-8 THE DERIVATIVE AS A FUNCTION

The function

is called the derivative of f. The value of f” at x can be interpreted geometrically as the §lo P ¢ of
the tangent line to f at the point (z, f(z)). Note: f’ is called the derivative because it has been derived from f using
the limit operation defined above. The domain of f is the set of all x such that this limit exists and may be smaller than

the domain of f.
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Example 1: Let f(x) = 23 — 22 + 2.

(a) Find a formula for f/(z).
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(b) Ilustrate this formula by com};Jarmg the graphs of f(x) and f'(z), which are shown below.
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Example 2: The graph of f is given below. Use it to sketch the graph of the derivative f’.
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Example 3: If f(2) = /2 — 5 find the derivative of f. State the domain of f and f.
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Example 4: If f(z) =

513 f1nd ['(z). State the domain of f and f. DW\WV\ ﬁ'. X# "9&
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Other Notations for f'(z)

0iven y=F00, dtﬁ/dx:—F’Lx)'

A function f is differentiable at a if f’(a) exists. It is differentiable on an open interval (a,b) [or
(a,00), (—00,a) or (—oo, 00)] if it is differentiable at every number in the interval.

Example 5: Where do the following functions fail to be differentiable?
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Example 6: Where does f(x) = ¥/« fail to be differentiable? Graph f ( ) and explain what the behavior of the
tangent line is near this point.
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Example 7: A graph of a function f(x) is shown below. State, with reasons, where the function f is not differen-
tiable.
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Differentiable Implies Continuous: If f is differentiable at a, then f is continuous at a.

Proof:
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Higher Derivatives

If f is a differentiable function then its derivative f’ is a function, so f’ may also have a derivative of its own,
denoted by (f')’ = f”, called the second derivative. Similarly you can also take the derivative of the second
derivative, called the third derivative f’.

Example 8: Given f(z) = 2® — 2z + 2, find and interpret f”(z), f"(z) and f™ (z). (Note: We found f'(x) = 322 — 2
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